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ABSTRACT

The Smith chart, while being a very useful graphical tool
for the analysis and design of high frequency circuits, is
subject to manual interpretation errors. A normalized
impedance and admittance chart (Y-Z Smith chart)
represented by a neural network type distributed computing
system is developed for design automation. Two examples
showing the use of such a neural network to design an
impedance matching circuit are presented.

INTRODUCTION

The analysis of transmission-line problems and of
matching circuits at microwave frequencies is generally
tedious in analytical form. The Smith chart provides a very
useful graphical tool to these problems. However, the
manual interpretation of the Smith chart can be error
prone. This project is, to the best of our knowledge, the first
attempt to represent a normalized impedance- and
admittance-coordinate Smith chart (Y-Z Smith chart) by a
neural network. Examples of using this neural network to
determine an impedance matching circuit are
demonstrated.

The objective of this research is to automate the analysis
of a Smith chart. Recently, neural networks have gained
their popularity as a special form of parallel computer {1].
Neural networks are formed by interconnecting many
simple processors (neurons). In contrast to conventional
parallel computers, the function of each neuron is simple,
and the overall behavior is determined predominantly by
the set of interconnections. Although neural networks are
famous for their capability to learn the solutions to the
problems that they are designed to solve, they also provide a
framework for constructing specialized parallel machines to
solve specific problems. For example, a neural network
designed to solve the travelling salesman problem, which
represents a class of combinational optimization problems,
is proposed in [2].
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NEURAL NETWORK SMITH CHART

Figure 1 shows a Y-Z Smith chart. For the sake of
description, only constant-resistance and constant-
conductance circles are shown in Figure 1. All constant-
resistance circles are shown with solid lines and all constant»
conductance circles are shown with dotted lines. Also, only
a sufficient number of circles for the explanation of this
novel representation are provided. The technique to be
described can be readily extended to any desired precision
by adding circles to the Y-Z Smith chart.

Figure 1 Neuron placement on a Y-Z Smith chart.

The resistance and conductance circles intersect with
each other and form a set of cross-over points on the Y-Z
Smith chart. A neuron, called an intersection neuron in the
following discussion, is placed on each of these intersections.
We will first describe the function of a neuron to be used in
this technique, Figure 2 shows a neuron with n inputs (iy -
ip) and one output (K). An input can be excitatory
(indicated by a solid circle) or inhibitory (indicated by a
hollow circle) and is assigned a weighting factor Wj. A
threshold value, T, is associated with the neuron. The
function of the neuron is quite simple. It simply uses the
following equation to generate an input value I,
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where W; is positive for an excitatory input and negative for
an inhibitory input. If Iis above the threshold value T, the
neuron fires and produces an output of K = 1. Otherwise,
the neuron remains idle and outputs a K = 0. A neuron is
also associated with a time constant (7) that determines the
latency between the time when its inputs change and the
time that it fires.

Figure 2 The structure of a neuron.

Two ways of representing the Y-Z Smith chart by a
neural network will be shown. In order to show the
structure of the neural network that is used to represent the
Y-Z Smith chart and the detailed interconnections, it is
mapped to rectilinear graphs as shown in Figures 3 (version
1) and 8 (version 2). For easy visualization, only a portion
of the upper half of the Smith chart (i.e., positive reactance)
is provided in these Figures. A complete implementation
can be easily derived from Figure 1.
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Figure 3 The Y-Z Smith chart neural network mapped
to a rectilinear graph (version 1).

In the first version implementation of Figure 3, all the
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neurons in a row/column excite each other. For clarity, this
mutual excitatory relationship is shown in Figure 3 as
connecting a row/column to a summing unit (+) which
sends their sum back to all contributing neurons as an
excitatory signal. The equivalence between these
interconnections is shown in Figure 4. All neurons also have
an external input (not shown) which can be set by the user.
Furthermore, a global inhibitory neuron (-) is associated
with all neurons. The relationship between an inhibitory
neuron and its associated neurons is shown in Figure 5.
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Figure 4 The relationship between a summing unit and
its associated neurons.

(O
L
O ) ©

Figure 5 The relationship between an inhibitory neuron
and its associated neurons.

To demonstrate the application of the neural
network Y-Z Smith chart in Figure 3, it is used to determine
an impedance matching circuit for an impedance 0.2+j0.2.
In this example, the weighting factors and threshold values
for the neural network are given in Table 1.

The locations of all neurons in the Y-Z Smith chart are
known. However, for convenience of explanation, the
neurons will be identified by their coordinates (x, y) in the
following discussion, where x and y are the column and row
numbers, respectively. For example, the intersection
neuron at the lower left corner has coordinates (1, 1). The
neurons at (2, 2) and (5, 4), representing the impedances Z;
= 0.2+j0.2 (starting impedance) and Z,, = 1 (impedance to
be matched), respectively, are identified in the neural
network. An input signal of 1 is applied to the external
inputs of these two neurons at time t = 0. After the time
constant 7, these two neurons fire (i.e., turn on). The



summing units of row 2 and column 2 provide a sum of 1 to
all neurons in this row and this column, respectively.
Meanwhile, the summing units of row 4 and column 5 also
provide a sum of 1 to all neurons in this row and this
column, respectively. These sums have no effect on the
neurons except the one that is at (2, 4), which will receive an
input of 2 and fires at t = 2r. The firing of this neuron
boosts the outputs of the summing units at column 2 and
row 4 to 2. These summing unit outputs turn on the neurons
on the row/column at t = 37. A snapshot at t = 37 is shown
in Figure 6, in which the neurons in column 2 and row 4 are
fired.

Table 1 Parameters for the neural network shown in

Figure 3.

Threshold value of an intersection neuron 1.9
Threshold value of the inhibitory neuron 3.8
Timing constant of an intersection neuron 1r
Timing constant of the inhibitory neuron 0.57
Weighting Factors

an external input -> an intersection neuron 2
a summing unit -> its associated neurons 1
an intersection neuron -> the inhibitory neuron 1
the inhibitory neuron -> its associated neurons -1
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Figure 6 A snapshot of Figure 3 att = 37.
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It can be easily seen from Figure 6 that any intersection
neuron now has a minimum input value of two and hence all
neurons will be turned on. The inhibitory neuron is
provided to solve this problem. Due to its threshold value,
the inhibitory neuron remains idle when less than 4 neurons
are fired. The multiple neurons on the fired column and
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row raise the inhibitory neuron input to a value beyond its
threshold. An iphibitory signal is then sent to all
intersection neurons. Because of the smaller time constant
of the inhibitory neuron, the inhibitory signal will stop the
neurons stayed off up to this point from being turned on.
This inhibitory signal has no effect on the fired column and
row since it is outweighted by multiple excitatory signals.
The network is now at a stable state.

Tracing a path consisting of the fired neurons between
neurons (2, 2) and (5, 4) will identify neuron (2, 4) as a
turning point. The location of this neuron on the Smith
chart determines the topology and value of
impedance/reactance that should be added to the circuit.
The result of this impedance matching circuit is shown in
Figure 7.

j0.2

Z=1

Figure 7 The impedance matching circuit.

The neural network shown in Figure 3 does indeed give
the correct impedance matching circuit. However, the
neuron at the intersection of firing column and row needs
to be located manuaily by tracing them. In addition, a
global inhibitory neuron is needed which may make the
implementation difficult. =~ These drawbacks can be
eliminated by the second version of a neural network Smith
chart shown in Figure 8. In Figure 8, each neuron actually
includes a display neuron (D) and a calculation neuron (C).
All the C-neuron outputs in a row/column are connected to
a summation unit (£) which sends the result to all D-
neurons in the same row/column as an excitatory signal.
This is equivalent to exciting the receivers of the summation
unit by all its contributing C-neurons. Figure 9 shows this
equivalence relationship. Each pair of D- and C-neurons
share a common external input (not shown) which can be
set by the user. This neural network is used to solve the
same impedance matching problem described above. The
parameters for this neural network are given in Table 2.



Figure 8 The Y-Z Smith chart neural network mapped to a

rectilinear graph (version 2).
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Figure 9 The relationship between a summation unit and
its associated neurons.

Table 2 Parameters for the neural network shown in

Figure 8.
Threshold value of a D-neuron/C-neuron 1.9
Timing constant of a D-neuron/C-neuron 17
Weighting Factors
an external input -> a D-neuron/C-neuron 2
a summation unit -> a D-neuron 1

In Figure 8, the D- and C-neurons at both locations (2,
2) and (5, 4) are turned on at t = 7 by external inputs. The
summation units of column 2 and row 4 will turn on the D-
neuron at (2, 4) which indicates the impedance matching
result. This is shown in Figure 10. While the result is

identical to that of the first version, the neuron (2, 4) is
identified automatically in the D-neuron layer.
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Figure 10 A snapshot of Figure 8 att = 27,

SUMMARY

In summary, a novel neural network representation of

the Smith chart is developed. Two examples showing how
this neural network can be used to solve the problem of
impedance matching were given. This technique can be
extended to other analyses based on a Smith chart such as
optimizing the noise figure and the gain of an amplifier.
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